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I .  
SUMMARY 

The Uflyand-Mindlin p l a t e  equations i n  t h e  form of two second 

order  equations i n  terms of plate-displacements are analyzed by t h e  

method of cha rac t e r i s t i c s  f o r  t he  case of an infinite +--*- 
with a circular hole. 

t he  four  c h a r a c t e r i s t i c  d i r ec t ions  including t h e  technique of 

handling t h e  propagation of d i scon t inu i t i e s ,  are establ ished,  

Numerical examples presented include the  cases of t ransverse  shear  

and r a d i a l  bending moments applied a t  t h e  hole. 

obtained is s a t i s f a c t o r y  f o r  most of t h e  cases. 

Procedures of numerical in t eg ra t ion  along 

The n-rical accuracy 

c 
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SYMBOLS 

A = a rb i t r a ry  constant 

B = a rb i t r a ry  constant 

c = p la t e  ve loc i ty  = J E / p ( l - w 2 )  
P 

c = shear wave ve loc i ty  = a - = E/Zp(l+v) 
2 

D = f lexura l  r i g i d i t y  = ~ h 3 / 1 2 ( 1 - ~ 2 )  

E = Modulus of E l a s t i c i t y  

G = shear modulus - E/Z(l+w) 

h = p la t e  thickness 

k = time f o r  a ramp t o  reach i ts  maximum value 

ki = shear  correct ion f a c t o r  

= r ad ia l  bending moment Mr 
Me = t angent ia l  bending moment 

Qr 

r = radial d i s tance  

= t ransverse shear  stress re su l t an t  

r = inner radius of p l a t e  

t = time 

0 

w 

8 = t angent ia l  d i r ec t ion  

= t ransverse displacement of t he  midplane 

v = Poisson's r a t i o  

p = densi ty  

0 = ro t a t ion  of t he  cross-sect ion about t he  tangent ia l  axis 

I 

Subscripts r and t designate  p a r t i a l  d i f f e r e n t i a t i o n s  (except and Mr) 
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I. INTRODUCTION 

The research reported herein w a s  motivated by the  des i r e  t o  

understand the  response of t h e  s t ruc tu ra l  wall of fuel tanks of space 

vehicles when impacted by meteoroids. 

a meteoroid could create a high-pressure region i n  the  l i qu id  fue l ,  

capable of burs t ing  the tank and causing catastrophic  fa i lure .  The 

tank  wall w i l l  be t r ea t ed  here as a large p l a t e  with a c i r c u l a r  hole,  

After enter ing t h e  fuel tank ,  

under an axisymmetrical moving load. 

p l a t e  equations w i l l  be used. 

centrated r ing  load w i l l  be considered. 

a r b i t r a r i l y  d i s t r ibu ted  loads which vary with respect t o  time is being 

s tudied and the  r e s u l t s  w i l l  be reported a t  a later date. 

For s impl ic i ty ,  only l i n e a r  

In the  present report, only a con- 

Currently, the  case of 

The classical Lagrange's equation f o r  f l exura l  motions of elastic 

p l a t e s  is  parabolic i n  nature. 

ve loc i ty  of s inusoidal  naves is inversely proportional t o  the  wave 

length. 

length,  t he  wave propagation veloci ty  approaches i n f i n i t y  and any 

suddenly applied disturbances are fe l t  immediately at an i n f i n i t e  

dis tance away. 

According t o  t h i s  equation, t h e  wave 

For sharp t r ans i en t  inputs which excite waves of very sho r t  

This is contradictory t o  experimental evidences. 

By introducing correct ion terms due t o  ro ta tory  i n e r t i a  and 

shear effect, Uflyand [l] and Mindlin [ 2 7  derived a set of governing 

equations which are hyperbolic. 

of equations may be deduced d i r ec t ly  from the  three-dimensional 

equations of e l a s t i c i t y .  

is analogous t o  t h e  Timoshenko beam theory, which a l so  includes tke 

effects of shear  force and rotatory i n e r t i a .  

Mindlin a l so  showed t h a t  t h i s  set 

The theory behind these p l a t e  equations 

Although it is more 
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r e a l i s t i c  as compared t o  the  c l a s s i c a l  Lagrange theory,  t he  Uflyand- 

Mindlin theory i s  s t i l l  approximate, s ince  it involves t h e  assumption 

of plane sect ions remaining plane, and the  se l ec t ion  of a constant  

appearing i n  the  r e l a t i o n  between average t ransverse  shear  stress and 

s t r a i n .  This theory gives accurate  r e s u l t s  f o r  moderately shor t  wave 

length and moderately high frequency inputs  , but it cannot be 

considered accurate f o r  very sho r t  waves. 

Solutions of t he  Uflyand-Mindlin equations due t o  suddenly appl ied 

concentrated t ransverse loads were obtained by Miklowitz [ 31 and 

Lubkin [ 4 1  . 
lengthy inversion processes,  t h e i r  r e s u l t s  were i n  the  form of 

quadratures with integrands containing d i f f e r e n t  combinations of Bessel 

functions.  

performed on the e l ec t ron ic  computer. 

f a c t  t h a t  t h e i r  r e s u l t s  can be extended only t o  inputs  involving o ther  

time functions of t ransverse shear  (convolution technique) and not t o  

o ther  types of  inputs ,  such as suddenly applied moments. 

Both of them used the  Laplace transform method and af ter  

To evaluate  these r e s u l t s ,  numerical i n t eg ra t ion  had t o  be 

O f  importance, a l so ,  i s  the  

Due t o  the hyperbolic nature  of t he  governing equations,  t he  method 

of cha rac t e r i s t i c s  may be used t o  f ind  the  solut ion.  

analogous approach by Leonard and Budianskyr 51 , Jahsman [ 6 ]  applied 

the  method of c h a r a c t e r i s t i c s  t o  the  f l exura l  equations of Uflyand and 

Mindlin. 

equations and the  r e l a t i o n s  which govern the  propagation of jumps a t  

the  wave f ront ,  but he d id  not solve t h e  c h a r a c t e r i s t i c  equations behind 

the  wave fronts.  

"plate-displacement components" as the  dependent var iab les ,  therefore  

h i s  governing equations a r e  f i r s t  order  d i f f e r e n t i a l  equations cons is t ing  

Following an 

He derived t h e  physical c h a r a c t e r i s t i c s ,  t h e  c h a r a c t e r i s t i c  

Jahsman used Mindlin's I tp la te -s t ress  components" and 
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of the plate-stress equations of motion and the plate-stress-displacement 

equations. 

sidered and the method of characteristics is applied to the two second 

order plate equations of motion in terms of the two plate-displacement 

components 4 and w. 

In the present report, the axisymmetrical case is con- 

These results are compared with those obtained 

by Jahsman. 

The characteristic equations are then written in finite-difference 

form and a scheme is developed to solve these equations numerically for 

various inputs at the circular hole of an infinite plate. 

in solving the problem with an input in transverse shear QI, a special 

technique is introduced to handle the discontinuities along the steeper 

wave front in a four-wave system. 

In particular, 

A few numerical examples are presented. 

, 
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11. Characteristic Equations 

The Uflyand-Mindlin equations in polar coordinates for an 

elastic plate (with no surface tractions) under axisymmetrical 

loading conditions are 

These equations are identical with (3) and (4) of [6], with 

hir, - Q, = a l a e  

[ 3 ] ,  The system of equations (1) to (S), which will be considered as the 

stress-displacement approach, are hyperbolic equations and their 

character i s t i c d i r ec t ions and ch ar ac t er i s t ic equ at i ons h av e been 

derived by Jahsman [6] .  

= o , They may also be transformed into (2) of 

In this report, we shall follow the 

displacement approach which uses a system of two second-order 

equations involving t$ and w. 

applied to these two second-order equations. 

( 4 ) ,  and ( 5 )  into (1) and (2)  we have 

The method of characteristics is 

Substituting ( 3 ) ,  

4 



These two equations are a l so  hyperbolic and their physical 

cha rac t e r i s t i c s ,  or cha rac t e r i s t i c  d i rec t ions ,  are 

These represent  four  physical  cha rac t e r i s t i c s ;  t h e  v e r t i c a l  

d i r ec t ion  d r  = 0 is not a cha rac t e r i s t i c .  

t h e  r e s u l t s  obtained by using the  stress-displacement approach, 

where i n  addi t ion t o  these  four cha rac t e r i s t i c s ,  t h e  d i r ec t ion  d r  = 0 

is a l so  a physical c h a r a c t e r i s t i c ,  Although 

d r  = 0 is  a degenerated Charac te r i s t ic  associated with static d i s -  

continuities, t h e  c h a r a c t e r i s t i c  equation along dr = 0 does supp&y 

t h e  f i f t h  equation for t h e  f i v e  var iab les  t$t, ut ,  Mr, Me, and . 
In  using t h e  system of equations (6)  and ( 7 ) ,  t h e  condition of  

cont inui ty  i n  the  displacement funct ion 4 suppl ies  t h e  add i t iona l  

equation required,  as w i l l  be shown below. 

This is d i f f e r e n t  from 

as shown i n  Appendix A. 

For a p l a t e  i n  which E, 

P, and v are constant t h e  two wave speeds, as given by (8) and (9) , 
are constant and the  physical c h a r a c t e r i s t i c s  are s t r a i g h t  l i n e s  

when represented i n  t h e  r,t-plane. 

The c h a r a c t e r i s t i c  equations (sometimes known as t h e  compatibi l i ty  

equations) along I+ and I- are, respect ively,  

where t h e  upper s igns  r e f e r  to  I+, t h e  lower s igns  t o  1- . 
c h a r a c t e r i s t i c  equations along II+ and 11- are,  respec t ive ly  

The 



These four  equations, (10) and (ll),  govern t h e  va r i a t ion  of t h e  

va r i ab le s  wr, w t ,  or, I#,, and 4, along t h e  physical  c h a r a c t e r i s t i c  

d i r ec t ions ,  An addi t ional  equation based on t h e  cont inui ty  of 4, o r  

d@ = b d r  + @+dt (12) 

can be wri t ten along any d i rec t ion .  

d i r ec t ion  d r  = 0, (12) may be wr i t t en  as  

For instance,  along a v e r t i c a l  

d @  = @& 
Along I' and I-, it becomes 

O r ,  along 11' and 11-, 

111. Equations Governing Discont inui t ies  

The c h a r a c t e r i s t i c  equations (10) and (11) are appl icable  f o r  

continuous f i e l d s  with possible  d i scon t inu i ty  i n  t h e  second der iva t ives  

of 4 and w along t h e  physical c h a r a c t e r i s t i c s ,  Along these  d i r ec t ions ,  

d i scon t inu i t i e s  i n  t h e  first der iva t ives  of I$ and w can a l s o  e x i s t ,  

but t h e s e  w i l l  not  be governed by (10) and (11). 

procedure as i n  [ 6 ] ,  [7], and [8] it i s  shown i n  Appendices A and B 

t h a t  d i scon t inu i t i e s  across 1' and I- are governed by t h e  following 

equations 

Following a similar 

S@r = A r  - !4 (16) 

6 



where, for example, 6Mr designates t h e  abrupt change or '*jump'' i n  

r *  Similarly,  across 11' and 11-, w e  have 

I t  should be noted t h a t  i n  deriving (16) t o  (24), t h e  conditions 

bw - S$ - ' O  have been used; i.e., only continuous w and 4 functions 

are being considered. 

IV. I n i t i a l  and Boundary Conditions 

The problem t r e a t e d  in  t h i s  repor t  involves an i n f i n i t e  p l a t e  

with a c i r c u l a r  hole  of radius ro, i.e., t h e  region ro s r 

proper i n i t i a l  conditions for t h i s  problem requi re  t h e  spec i f ica t ion  

of all  t h e  four  var iab les  +r, +t, wr, and wt at  t = 0 ,  

case of an i n f i n i t e  plate under no i n i t i a l  loads and ve loc i ty ,  

t h e  i n i t i a l  conditions are 

Q) . The 

For t h e  

7 



A t  r = roD a properly posed boundary condition requi res  the  

specification of two of the  four funct ions tIr, 6,, wr, and wt.  

a l t e rna t ive ly ,  by using equations (3) , (4), and ( 5 )  , any two of t h e  

f i v e  functions MrD M e ,  Qrr  4,, and wt may be spec i f ied  along r = r 

O r  

0 .  

Without sur face  t rac t ions ,  t he  region between r = ro + c t and 

P 

P 
t = 0 i n  t h e  physical  plane ( r  vs. c t )  conta ins  the  t r i v i a l  so lu t ion  

of vanishing der iva t ives  of 4 and w. Along the  l i n e  r = ro + c t  
P 

these  der iva t ives  are a l s o  zero i f  t h e  boundary condition a t  r = ro , 
t = 0, does not include d i scon t inu i t i e s  i n  the  funct ions I $ I ~ ,  tit, M r ,  

o r  Me, 

t = 0, they w i l l  propagate along t h e  l i n e  r = r 

(16) through (20). 

When d i scon t inu i t i e s  i n  these  var iab les  occur a t  r = roJ 

+ c t according t o  
O P  

When discontinuous funct ions of wr, w t ,  o r  Or a r e  prescribed a t  

t - 0, these  d i scon t inu i t i e s  w i l l  propagate along t h e  l i n e  
0' 

r = r 

r = r + k,c,t , according t o  (21) through (24) .  Within the  region 

between the l i n e s  r = ro + kpcpt  and r = ro + c t t h e  de r iva t ives  
P 

of @ and w a r e  i n  general  d i f f e r e n t  from zero, although they vanish 

0 

on the  l i ne  r = r + c t . 
O P  

V. Numerical Procedures 

In performing t h e  numerical ca lcu la t ions ,  t h e  physical plane i s  

first divided i n t o  a network by t h e  cha rac tk r i s t i c  l i n e s  and t h e  

d i f f e r e n t i a l  equations are then wr i t ten  i n  f in i t e -d i f f e rence  form i n  

terms of the values of t h e  dependent va r i ab le s  a t  t h e  mesh po in t s  of 

t he  network, 

cha rac t e r i s t i c  l ines i n  t h e  physical plane,  with each c h a r a c t e r i s t i c  

in te rsec t ing  t h e  o ther  th ree .  

In  the present problem, the re  are four  fami l ies  of 

The r e s u l t i n g  network contains too man 

i r r e g u l a r  mesh poin ts  t o  be p r a c t i c a l  f o r  numerical ca lcu la t ions .  

8 



This is d i f f e r e n t  from the  case of propagation of d i l a t a t i o n a l  waves 

as t r ea t ed  i n  Reference 7. In t h a t  case, t h e  poin ts  of i n t e r sec t ion  

between dr /d t  = c and dr /d t  = -c cha rac t e r i s t i c s ,  were so arranged 

t h a t  they were always s i tua ted  on t h e  d r  - 0 cha rac t e r i s t i c s .  

t r e a t i n g  wave propagation i n  Timoshenko beams, Leonard and hd iansky  

IS]  shawed t h a t  t h e r e  are also four  families of  cha rac t e r i s t i c s ,  

j u s t  as i n  t h e  present  case. 

they chose a spec ia l  case where t h e  wave propagation ve loc i ty  of two 

of t h e  four families was iden t i ca l  with t h e  o ther  two families, 

which e s s e n t i a l l y  reduced it t o  a two c h a r a c t e r i s t i c  family problem. 

In 

However, i n  t h e  numerical so lu t ion ,  

For t h e  present  problem, evenly spaced I* and I- Charac te r i s t ics  

are used as t h e  main network as shown in  Fig. 1. 

these  mesh poin ts  w i l l  be calculated.  

variables wr, ut, +r, I$,, and $ at a typica l  i n t e r i o r  po in t  1 may be 

ca lcu la ted  if  t h e  corresponding values a t  neighboring poin ts  2, 3, and 

4 are known from previous calculat ions,  

istics from point  1, which in t e r sec t  t he  I- and I+ c h a r a c t e r i s t i c s  

(which pass through point  4) a t  po in ts  5 and 6,respect ively.  Values of 

t h e  var iab les  a t  poin ts  5 and 6 a r e  obtained from those a t  po in ts  2, 4, 

and 3 by l i n e a r  in te rpola t ion ,  

t h e  upper sign is then w r i t t e n  i n  f in i t e -d i f f e rence  form between 

poin ts  1 and 2. 

a 11* between poin ts  5 and 1, and along a 11- between poin ts  6 and 1, 

t h e  corresponding cha rac t e r i s t i c  equations are a l s o  expressed i n  f i n i t e -  

d i f fe rence  form, These f in i te -d i f fe rence  equations are 

Only proper t ies  a t  

The values of a l l  t h e  dependent 

Draw II+ and 11- character-  

The characteristic equation (10) with 

Similar ly ,  along a I- between poin ts  3 and 1, along 

9 



Along 1' : 
.I 

Along I- : 

In addition, the  cont inui ty  condition f o r  41 along d r  - 0, equation (13),  

i n  difference fonn i s  used, 
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In  these equations, (26 )  t o  (M), a numeral subscr ipt  ind ica tes  

t he  point  a t  which the  quant i ty  is evaluated, a double n m e r a l  

subscr ip t  designates the  average between the  two points. These 

f i v e  equations, (26) t o  (30), can be solved f o r  t h e  f i v e  unknowns 

0 ,  or, $,, wr, and w 

equations only central differencing and averaging operations have 

at poin t  1. Notice t h a t  i n  wri t ing these t 

been used, and s ince  the  equations are l inea r ,  t he  t runcat ion 

e r r o r  is  of t he  (Ar) '  type. 

For points  along the l i n e  r = r the  I+ and 11* character-  
0' 

istics, represented by equations ( 2 6 )  and ( 2 8 ) ,  are absent. Since 

two of t he  var iables  Or, ot, w and wt are spec i f ied  along t h e  rD 
r = r l i ne ,  the  remaining three equations (27), ( 2 9 ) ,  and (30) 

are s u f f i c i e n t  for f inding the three remaining unknowns, i.e., 
0 

t$ together  with t h e  two unspecified var iables  among Or, Ot, wr, 

and wt . 
and (5) w i l l  replace eqs. (26) and (28) and t h e  system of f i v e  governing 

If Mr and Qr are specif ied along r = ro , then eqs. (3) 

equations necessary for t h e  determination of t h e  f i v e  var iab les  is 

again complete. 

V I .  Approximate 'tJump Line" 

When the  input a t  r = ro involves d iscont inui t ies  (jumps) i n  Qr, 

or w rD t D  tw these  d iscont inui t ies  propagate along the  II+ l i n e  which 

has an equation r = + v t ' ,  where v = k c /c and t ' = c t. This 

l i n e ,  i n  general, does not i n t e r sec t  t he  main network a t  t he  mesh points ,  

as shown i n  Fig. 2. One way of t r e a t i n g  t h i s  l i n e  is t o  introduce a 

rO 2 2  P P 

new i r r e g u l a r  mesh point wherever t h i s  l i n e  i n t e r s e c t s  t he  main 

network. This would introduce a considerable amount of complexity and 

therefore ,  is not being used here. Instead, t h e  s t ra ight  l i n e  

11 



r = r 

points ,  bu t  with a discontinuous s lope,  

approximate jump l ine  or simply, jump l ine.  

t h i s  l i n e  and the  procedure i n  t r e a t i n g  t h e  jumps across  it w i l l  be 

given below. 

+ p t '  w i l l  be  replaced by a l ine  passing through regular  mesh 
0 

This l i n e  w i l l  be ca l l ed  the  

The construct ion of 

Let us  introduce a new coordinate system (a,B) which cons is t s  of 
+ 

t he  I 

network is then composed of constant a and constant  8 l ines ,  with 

constant increment Aa = A8 The point  of i n t e r sec t ion  between t h e  

l i n e  r = r + u t '  and a p a r t i c u l a r  a = constant  l i ne ,  say a = m(Aa) 

l i n e ,  where m is  an in t ege r ,  is  a t  

and I- c h a r a c t e r i s t i c s  as shown i n  Fig. 2. The f in i t e -d i f f e rence  

* 

0 

In general ,  t h i s  8 is  not an i n t ege r  and therefore  i s  not  located a t  

a regular  mesh point.  

be moved t o  t h e  neares t  regular  mesh poin t  along t h e  a = m(Aa) l ine .  

This is achieved by l e t t i n g  

In construct ing t h e  jump l i n e ,  t h i s  po in t  w i l l  

= ( ,  +,)rn(A#) = (n+ 6 )  bo( 

where n is  an in t ege r  and 0 5 e e 1 e 

i f  e 

it i s  placed a t  a = m(Aa), 8 = (n+l)(Aa). 

by 

or constant r, shown i n  Fig. 2(a) as a heavy "zig-zag" l ine .  I t  is 

evident t h a t  as the mesh s i z e  Aa approaches zero, the jump l i n e  approaches 

the  s t r a i g h t  l i n e  r = ro + u t '  as a l i m i t .  

For a p a r t i c u l a r  value of  m,  

0.5, the jump point  is  moved t o  a = m(Aa), 8 = n(Aa); i f  c 2 0.5, 

The jump l i n e  is  then drawn 

connecting these  poin ts  with s t r a i g h t  l i n e  segments of constant 8 

A t  t h e  mesh poin ts  on the  jump l i n e ,  each of t he  var iab les  wr ,  w t ,  

r and Q assumes two values,  e , g o ,  wr (unjumped value) and wr + $wr 

12  



(jtnaped value) , etc. , where 6wr, bwt, and 6% are ca lcu la ted  from (21) 

t o  (23). 

t hese  f in i t e -d i f f e rence  equations which connect t h e  poin ts  on t h e  jump 

l i n e  with poin ts  t o  the r i g h t  of the  jump l ine ;  t he  jumped values of 

t h e  var iab les  on t h e  juap l i n e  should be used f o r  those equations 

The unjumped values of these  var iab les  should be used i n  

connecting points t o  the  lef t  of t h e  jump line. 

Unjumped values a t  poin ts  such as A and B, which are not  s i t u a t e d  

a t  t h e  upper end of t h e  v e r t i c a l  l i n e  segments of t h e  jump l i n e ,  may be 

ca lcu la ted  h? t h e  regular  s e t  of f in i t e -d i f f e rence  equatioris ( 2 0 )  t o  (30). 

Values nf a l l  var iab les  at point  F a r e  calculated by t h e  same set 

I 

of equations,  with the  jumped values at  poin ts  A and B. 

t h e  values at po in t s  which l i e  a t  t he  upper end of t h e  v e r t i c a l  l i n e  

To ca lcu la te  

segments, such as poin t  G, a d i f f e ren t  ca lcu la t ion  procedure is employed. 

I n  t h e  f i n i t e  d i f fe rence  equations (26)  and (28) wri t t en  along t h e  I+ 

and II+ waves (passing through point G) we must use the  jumped values 

a t  point  B an8 t he  jumped expressions of t h e  var iab les  at point  G ,  i.e., 

w + bw e tc .  In wr i t ing  (27) and (29) f o r  point  G ,  t h e  unjumped 

values  a t  B and the  unjumped expressions at G must be used. 

.. . 
t G  tG 

In using 

(30) f o r  point G, no spec ia l  procedure is required s ince  t h i s  equation 

does not  contain any var iab les  with values which jump when crossing I1 . + 

Thus, f o r  point  G, w e  have again f i v e  equations for t he  f i v e  unknowns 

W t G B  w s B  * t G  OrGD and OG 

An a l t e r n a t e  procedure f o r  approximating t h e  r = ro + v t '  l i n e  is 

as follows. 

a and constant B l i n e  segments, as shown by t h e  heavy l i n e  i n  Fig. 2(b). 

The approximate jump l i n e  is constructed by s t r a i g h t  constant 

A t  po in ts  such as A ' ,  t h e  unjumped values of t h e  var iab les  are ca lcu la ted  

f irst ;  whereas at  poin ts  such as C' t h e  jumped values are ca lcu la ted  from 

t h e  f i v e  f i n i t e  d i f fe rence  equatiqns. To c a l c u l a t e  t h e  unjumped values 

13 
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at  B', t he  amount Sw,, and $wtC, must be subtracted from t h e  previously 

calculated jumped values a t  C', before s u b s t i t u t i n g  them i n t o  t h e  f i n i t e  

difference equations. 

VI1 .Specific Examples 

A few examples with d i f f e ren t  inputs  a t  r - ro a re  presented below. 

These include inputs  of ramp Qr, ramp Mr,  and s t ep  Qr. Unfortunately, 

there  are no so lu t ions  by any o ther  methods which can be used t o  com- 

pare our results. 

asymptotic solut ion and compare it with t h e  corresponding s t a t i c  solut ion.  

In  [3] , the  case of a p l a t e  without a c e n t r a l  hole  is  solved. 

hope of making some comparison with 131 , a p l a t e  with a very small 

hole is  chosen f o r  our calculat ion.  Unless otherwise spec i f ied ,  t he  

p l a t e  dimensions and e l a s t i c  proper t ies  used f o r  a l l  examples are as 

f 01 lows ; 

Whenever possible ,  we s h a l l  ca l cu la t e  t h e  long time 

In the  

r = 0.025 i n  E = 28 x l o 6  p s i  

h = 0.125 i n  w = 0.3 

p = 7-41  x 10-41b-sec2/in 

Ar = 0.0125 i n  

0 

kl = 0.85 

The calculated p l a t e  ve loc i ty  c 

ve loc i ty  k2c2 is 1.11146 x l o 5  in/sec.  

f a c t o r  k i  should be between 0.76 and 0.91, [ 21 . 
w a s  used i n  [ 3 1  , t he  same value is  used here  f o r  comparison purposes. 

i s  2.03774 x lo5  in/sec. ,  and shear  
P 

The value f o r  the  shear  correct ion 

Since t h e  value of 0.85 

The calculat ions were performed on an IBM 7040 computer, with an 

average running time of 20 minutes f o r  each example. 

A. Ramp Qr Input 

The f i rs t  example is t h a t  of a p l a t e  under ramp Q, and zero M r  

input at r = ro, f o r  which t h e  proper boundary conditions are 

1 4  



at  r ro, t > 0, hir = 0 

Q1 = ( l / k ) t  lb / in  f o r  t < k 

1 1  lb / in  f o r  t > k 

where k = 1.227 ysec. is used, 

The response of t h e  p l a t e  due t o  t h i s  input  is shown i n  Fig. 3, 

F i g  3(a) shaws t he  shear  force  \ p lo t t ed  as a hmct ion  of t inre ,  a t  

t h r e e  d i f f e ren t  r ad i i .  

marked and labeled 1, 2, 3, and 4. Points 1 and 2 correspond t o  t h e  

time of a r r i v a l  of t h e  I 

t = 0 ,  

waves from r = ro, t = IC, i.e., t he  point of discontinuous dQ 

i n  t h e  input.  

po in t  4. 

diminishes and cannot be noticed a t  r/h = 2 or r /h  = 3. 

t h e  Qc curve first goes downwards, then increases  t o  a peak value, and 

eventual ly  settles t o  an asymptotic value a t  l a rge  time. 

s t a t i c  equilibrium of the  portion of the  p l a t e  bounded by ro and ip 

a r b i t r a r y  r, w e  have 

On t he  curve f o r  r/h = 1, four  po in t s  are 

+ 
0' 

Points 3 and 4 are at  the time of  a r r i v a l  of t h e  I+  and II+ 

and II* waves, respect ively,  from r = r 

/dt ro 
The change i n  slope of Qt is bare ly  d iscern ib le  a t  

As t h e  wave propagates outwards t h i s  d i scont inui ty  i n  s lope 

A t  r/h = 1, 

From t h e  

or 

f o r  Qro = 1. 

The calculated asymptotic value of 

large time, as can be seen from Fig. 3(a). 

t he re  are no peak values f o r  Q,, although t h e  long time values a l so  

approach those of t he  s t a t i c  solut ion.  

A t  r / h  = 1, or r = 0,125 in., the  s ta t ic  Qr is  0.20. 

approaches t h i s  s t a t i c  value a t  

A t  r / h  = 2 and r /h  = 3 

In  Figs. 3(b) and 3(c), t h e  moments Mr and Me a r e  given as function 

15 



- I  
of time, a t  t h e  th ree  r a d i i ,  

values of the moments increase monotonically. The maximum moment i n  

t he  p l a t e  is  Me which occurs a t  t he  hole ,  r = r This  moment, as a 

function of time, i s  p lo t t ed  separa te ly  i n  F i g .  3(d).  

As expected, a t  la rge  times the  absolute  

O 0  

Calculation of t h i s  problem with a mesh s i z e  one-half of t h e  one 

used above gives e s s e n t i a l l y  the  same numerical r e s u l t s .  

t h a t  the  accuracy by using the  present  mesh s ize  (Ar = 0.0125 in . )  i s  

sat  i s  f ac t  ory e 

This ind ica t e s  

B. Ramp Mr Input 

The radius of the  hole  f o r  t h i s  case is taken as ro = 0.25 in .  

The proper boundary conditions used a re  

a t r - r  t > O  
0' Qr = 0 

Mr = ( l /k )  t in- lb / in  f o r  t < k 

= 1  in-  l b / i n  f o r  t 2 k 

(k = 1.227 psec.) 

For a p l a t e  of t h i s  geometry under a s t a t i c  load M 

be shown t h a t  t h e  s t a t i c  so lu t ions  a re ,  

a t  r = r it  can ro 0' 

[9] e 

Our calculated r e s u l t s  are presented i n  Fig. 4. 

r 

F i g .  4(a) gives 

the  M 

Qr VS. t curves, a l l  evaluated a t  t h ree  d i f f e r e n t  r a d i i .  

approach t h e i r  corresponding s t a t i c  values a t  la rge  time. 

and shear a t tenuate  very slowly, f o r  instance,  a t  a time of  30 psec. 

a l l  values are s t i l l  s l i g h t l y  d i f f e ren t  from t h e i r  s t a t i c  values. 

vs. t curves, 4(b) gives the  Mo VS. t curves and 4(c) gives the  

A l l  curves 

The moments 

L 

16 
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C. Step e Input 

Due t o  t h e  approximation involved i n  replacing the  l i n e  r = r + v t '  
0 

by t h e  jump l i n e ,  t he  accuracy i n  t h e  case of t he  s t e p  input is not 

as good as those of t h e  ramp inputs, where t h e  jump l i n e  approximation 

is not used. 

The boundary conditions are 

a t r = r  

Therefore, a smaller mesh size, Ar = 0.00625 in.  was used. 

Mr = 0 

Q r ' O  f o r  t = 0 

= 1 lb / in  for t > 0 

0' 

Because of  t h e  small hole  s i z e  (ro/h = 0.2), t he  response of t h e  

p l a t e  should be very close t o  tha t  of a p l a t e  without a hole. 

speaking, a zero s lope boundary condition (+ 

shrinking t o  zero represents  more c lose ly  a p l a t e  without a hole. 

However, our ca lcu la t ions  ind ica te  t h a t  t h e  r e s u l t s  of Mr = 0 and t h a t  

of 0 = 0 are almost i d e n t i c a l  i n  regions not  t oo  c lose  t o  t h e  hole. 

Comparing our Fig.  5 w i t h  Figs. 3, 4,  and 5 of [3] it can be seen t h a t  

our Mr, and Me curves are i n  general  agreement with those 

ca lcu la ted  by Miklowitz f o r  a p l a t e  without a hole. 

S t r i c t l y  

= 0 at  r = r ) with ro 
0 

A s l i g h t  difference e x i s t s ,  however, between our r e s u l t s  and 

those of [ 3J . 
t i n u i t y  i n  Q, across t he  I1 

i nd ica t e s  t h a t  6% decreases as the  wave propagates outward and is 

proport ional  t o  l/rl l2 . ' I f  t he  applied concentrated shear  load is  

f i n i t e ,  and i f  t h i s  shear load is d i s t r i b u t e d  over a circle of small 

but  f i n i t e  radius ,  r such t h a t  Qro is f i n i t e ,  then, 

According t o  [ 3) , t he  magnitude of 6%, t h e  discon- 
+ 

wave f ron t ,  is i n f i n i t y .  Our equation (23) 

$ w i l l  always 
OD 

be f i n i t e  and w i l l  decrease i n  

The propagation of an i n f i n i t e  

magnitude as it propagates outwards. 

6% i n  [3] is due t o  t h e  fact t h a t  a 

17 



f i n i t e  shear  force,  Q , is being t r e a t e d  as an i n f i n i t e  shear  per  u n i t  

length,  Qr, a t  r = 0, as shown below, 

shear  force of constant magnitude, we have 

For a suddenly appl ied (s tep)  

According t o  equation (23), then 

- L i m  Q ---.roo As r approaches zero, the  l i m i t  value f o r  6Qr is ,fQ, - ro+o e - r rw  0 

The accuracy of t he  ca lcu la t ion  f o r  t h i s  case is  not t o  our 

s a t i s f ac t ion .  The long time asymptotic value of Q a t  r /h  = 1 is 

0.225, instead of t he  s t a t i c  value of 0.2, as shown i n  Fig. 5(a) .  

The calculated da ta  f o r  Mr and Me have considerable o s c i l l a t i o n  a t  

large time, In Figs ,  5(b) and 5 (c ) ,  for  t > 2vsec. , t h e  average values 

a re  p lo t t ed  i n  s o l i d  l i n e s  and the  dot ted l i n e s  ind ica t e  the  range of 

s c a t t e r  of the data.  The da ta  presented i n  Fig. 5 were ca lcu la ted  by 

the  a l t e r n a t e  procedure which approximates the  I 1  l i n e  by the  heavy 

l i n e  i n  Fig. 2(b),  To improve the  accuracy, mesh s i z e s  smaller  than 

0.00625 in .  are  cur ren t ly  being employed, In  addi t ion,  t he  procedure 

using t h e  jump l i n e  shown i n  Fig,  2(a) is  a l s o  being programmed on the 

computer . 

r 

+ 

De 

Three ramp Qr inputs  with successively s t eepe r  ramp slopes are 

calculated and the  r e s u l t s  compared with those due t o  the  s t e p  Qr input.  

The curves fo r  r /h  = 1 i n  Fig,  3 f o r  a ramp input  with k = 1.227 usec., 

and the  curves i n  Fig. 5 f o r  a s t e p  input are r ep lo t t ed  i n  Fig. 6. 

addi t ion,  the curves f o r  Qr, Mr, and Me due t o  ramp inputs  with 

Ramp Qr Inputs with Different  Slopes 

In 
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k = 0.613 and k = 0.307 are also included i n  Fig. 6 .  

show tha t  the  response of a p la te  due t o  ramp 

steeper  slope approaches tha t  due t o  t h e  s t ep  \ input. 

These r e su l t s  

inputs with successively 

The fact t h a t  the response due t o  a s tep  input can be approximated 

by t h a t  due t o  a s teep  ramp input, and vice versa, is very helpful. 

A true s tep  input cannot be realized i n  prac t ica l  cases, i.e., a l l  

loads must rise with f i n i t e  time. 

Fig. 6 ,  the  response due t o  a s tep input is more severe than tha t  

Usually, as i n  the  case shown i n  

- ~ _ _  ~ _ _ _  - -~ 

due t o  ramp. Therefore, the s t resses  and moments due t o  a s tep  input , 

may be used as the  upper bounds for  those due t o  actual loadings. 

Comparing t h e  responses due t o  s tep and s teep  ramp inputs;  i f  t h e  

solut ion for one is d i f f i c u l t  t o  obtain, the solution f o r  the other 

can be used as an approximation. 
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Figure 2 .  Approximations of t h e  XI t W w @ ,  r ro t u t '  ( J q  Line) 
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Figure 2. Approximations of the II* Wave, r - ra + u t '  (.Jump i.ine) 
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APPENDIX A 

II 
a 
1 
8 

Method of Characterist ics - Stress Approach 

Jahsnan [6 ]  has applied the method of charac te r i s t ics  t o  the 

stress formulation, (or more precisely, stress-displacement 

formulation) equations (1) t o  (S), of the  p l a t e  problem. 

a s e t  of p l a t e  equations w i t h  r and 0 as t he  space variables and 

H e  used 

expanded t h e  solut ion i n  Fourier series i n  terms of 8 

appendix, t he  misymmetrical equations w i l l  be used, and the  r e su l t s  

w i l l  be compared wi th  those of Jahsman. 

In t h i s  

Different ia t ing (3), (4), and ( 5 )  with respect t o  time and using 

0, and wt f o r  a g / a t  and a w / a t  , respectively, (1) t o  ( 5 )  become 

& + b Q r  d r  

d M  = D t+ + 3J 

dQr= d t  a(++ + -) a t  
where 
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These cons t i tu te  a set of l i n e a r ,  first order  equations f o r  t he  

var iab les  Mr, M O D  Qr, c $ ~ ,  and w 

( r , t -plane)  where these  va r i ab le s  a r e  continuous, we may w r i t e  

In regions i n  the  physical  plane t *  

(A.10)  

Equations ( A . l )  t o  (A.lO) may be considered as t e n  akgebraic equations 

f o r  the  ten der iva t ives  of thc  f i v e  va r i ab le s ,  

equations f o r  aMr/arD we obtain 

Solving these  

2r- d.CMr-MD) 0 0 00 Q 0 -4 0 0 
-'/r Q r  0 1 0 0 0 0  0 0 - p  
03 4% 
D'/r 
7s (bt 0 0 ~ 0 0 0 0 - ~ 0  

d Mr d t o o 0 o o o  0 0 
d Me 0 oodrdt  0 o 0 o 
d Qr Q d r d t o o  o o o 0 
d wt 0 0 0 0 0 0 0 d r d t  
d bt o O 0 0 0 d r d t 0  o 

I OOOO-0 0 0 0 
0 0 0 0  1 - 0 3 0  0 0 

I 
0 
0 
0 
0 
d r  
0 
0 
0 
0 

0 0 0 0  0 0  -d 0 0 

1 O o b O - D  0 0 o 
0 0 0 0  1-03 0 0 0 
0 0 I O 0  O O - # O  

d t o O o o o o  00 
0 o o d t - d t o  o 0 o 
o d r d t o o  O 0 0 O 
0 0 0 0 0 0  O d r d t  
0 0 0 0 0  d r A t  0 0 

0 ( 0 0 0 0  00-/3 
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(A.11) 

If t h e  d i s t r i b u t i o n  of t h e  f i v e  va r i ab le s  along a given l i n e  is 

known, t h i s  equation and t h e  other n ine  equations for the  remaining 

der iva t ives  may be obtained and t h e  process of numerical i n t eg ra t ion  

may be car r ied  out. This in tegra t ion  procedure f a i l s  i f  t h e  denmi-  

na tor  of ( A . l l )  vanishes, which r e s u l t s  i n  the  following f i v e  

physical  c h a r a c t e r i s t i c s  

(A. 12) 

(A.13) 

E d r = o  (A. 14) 

Along t h e  cha rac t e r i s t i c s  I I+ ,  11-, and 111, t h e  numerator of (A.ll) 

vanishes identicglly. 

upon subs t i t u t ion  of dr/dt  = 2 c , y ie lds  

Along I* and I-, t h e  vanishing of t h e  numerator 

P 

Thus along I* and I-, (A.15) are t h e  governing equations where only 

t h e  variablesand t h e i r  t o t a l  d i f f e r e n t i a l s  appear. Across a l l  these  

cha rac t e r i s t i c s ,  t he  f i r s t  der iva t ives  of t h e  f i v e  var iab les  may be 

discontinuous. 
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Solving (A.1) t o  (A.lO) f o r  any of t h e  o the r  n ine  der iva t ives  

y i e lds  the  same f i v e  physical c h a r a c t e r i s t i c s .  

of aMr/ar , t h e  numerators of t h e  so lu t ion  of aMr/a t  , a M e / a t  , 
a4, /ar  , and a g t / a t  , a l l  vanish i d e n t i a l l y  along II', 11-, and 111. 

The vanishing of t he  numerator of each of these  so lu t ions  along 1' 

and 1- also r e s u l t s  i n  (A.15). 

The solut ion of a w t / a t  is 

J u s t  as i n  t he  case 

Along I+, I-, and 111, t h e  numerator of (A.16) vanishes iden t i ca l ly ;  

along 11' and 11- , with d r /d t  = 

numerator y ie lds  

k2c2 , t h e  vanishing of t he  

From t he  so lu t ions  of aQr/ar  , aQ,/at , and a w t / a r  , we obtain the  

same r e s u l t s  as from a w t / a t  , i .e. ,  along I , I-, and 111, the  

numerators vanish iden t i ca l ly ,  and along II+ and 11-, (A.17) is  

obtained , 

+ 

The solut ion of aM,/ar i s  

fA .  18) 

where 
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Along 11' and 11-, t h e  maaerator of t h i s  vanishes iden t i ca l ly ;  along 

1' and I- t h e  vanishing of t he  numerator y ie lds  (A.15) . 
t h e  vanishing of t he  numerator along 111, d r  = 0, y ie lds  

In addi t ion,  

(A. 19) 

Notice that (A.19) may be obtained d i r e c t l y  by combining (A.3) and 

(A.4) along d r  = 0 .  

The results i n  t h i s  appendix a r e  i n  agreement with those 

obtained by Jahsman, except f o r  a s l i g h t  discrepancy when compared 

with h i s  (15). 

t h e  second equation of (15) of [6 ]  should have a 7 s ign  ins tead  of ?: ; 

a l s o  t h e  second of (15) of [ 6 ]  s h m l d  be for h i s  c h a r a c t e r i s t i c  I11 

and the  t h i r d  of (15) for 11, 

I t  is believed t h a t  t h e  last term i n  the  bracket of 

The c h a r a c t e r i s t i c  equations (A.15). (A.17) , and (A.19) are 

applicable f o r  continuous f i e l d s  with poss ib le  d iscont inui ty  i n  t h e  

second der iva t ives  of + and w and t h e  first de r iva t ives  of Mr, Me, 

and s. 
t he  first der iva t ives  of 4 and w, along with d i scon t inu i t i e s  i n  Mr, 

Me, and %, may a l s o  exis t ,  but these  w i l l  not be governed by (A.15), 

(A.17), and (A.19). 

% occur when a f i n i t e  step input (or jump input) i n  these  var iab les  

is applied at  a p a r t i c u l a r  r. 

of these d i scon t inu i t i e s  w i l l  be derived below following the  general 

procedure of [7] . 

Across the  physical cha rac t e r i s t i c s ,  d i scon t inu i t i e s  i n  

Discont inui t ies  i n  Or, I$,, wr, ut, Mr, Me, and 

The equations governing t h e  propagation 
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Figure A. 1 Discontinuities Propagating Along a I+ Characteristic 

Writing (A.15) with the lower sign along I- and integrating 

from points A to B (See Fig. A,l), we have 

or 

, and I$~ are being considered 
Similar integrations along 

rs 'r' Me since only bounded values of Q 

the right-hand side vanishes as dr + 0. 

II+, 11-, and 111, yield, respectively 

SQr - & Z C ~  r h  & W. = 0 (A.211 

S M, - .J d Mr = o  (A. 24) 
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In der iving these  th ree  equations, cont inui ty  of a l l  var iab les  along 

I, has been assumed, thus as a limit, 
+ 

Equations (A.21) and (A.22) immediately produce 

The va r i a t ion  of t h e  functions 6Yrs 6Mg, and 6$t as they 

propagate along I+ is obtained by wr i t ing  (A.15), with t h e  upper 

sign, once along I, and then along I,  , and subt rac t ing  one from 

t h e  other .  

+ + 

+ + A s  I, approaches I ,  , w e  have 

Subs t i tu t ion  of (A.20) and (A.23) i n t o  (A.24) results i n  

which upon in tegra t ion  y i e lds  

SM, = DAr-y2 

where the  constant of in tegra t ion  has been taken as DA, consis tent  

w i t h  (18). From (A.26), (A.20), and (A.23), 

SM, = ?/DAr-’h (A.27) 

&Q, = -c+ At-’”. (A. 28) 

Since we are l imited t o  bounded functions of M r I  MoI and $t I it 

follows from (3) and (4) t h a t  4r must a l so  be bounded, therefore  4 is 

always continuous, o r  64  = 0 , 

continuous funct ions,  them it follows t h a t  Mr, Me, $t, and $r are 

Alternat ively,  i f  we l i m i t  4 t o  

+ 
always bounded, Writing t h e  equation d$ = $rdr + $tdt along I, and 
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I f ,  and subtracting one from the Other, we obtain 

or 

(A. 29) 

Therefore, 

Repeating th is  process for discontinuities across I - ,  II', and 11-, 

we have the following results:  

Across 1' and I -  

& = A r-% 

&O+=T c,Ar-X 

S Mr = D A P - Y ~  

,$ M e  = z/D A r-vL 

$ Qr = &vtt = &% 0 

(A, 31) 

(A. 32) 
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APPENDIX B 

Method of Characterist ics - Displacement Approach 

The method of character is t ics  as applied t o  the system of 

equations (6) and (7) is outlined i n  t h i s  appendix. In regions i n  

the physical plane (r,t-plane) where the  variables +r, +t, wr, and 

w are continuous, we may write t' 

These equations, toge ther  w i t h  (6) and (7), form a system of s i x  

simultaneous equations as follows 

= F  

where 
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Equations (B.2) , i n  general ,  may be used t o  solve f o r  t h e  s i x  

second der ivat ives  of 4 and w. 

indeterminate so lu t ions  f o r  these  second de r iva t ives  w i l l  be 

obtained from (B.2) 

and l i n e s  along these d i r ec t ions  w i l l  be c a l l e d  t h e  physical  

cha rac t e r i s t i c s ,  o r  simply cha rac t e r i s t i c s .  

istics, t h e  second de r iva t ives  of Q, and w may be discontinuous. 

Along c e r t a i n  d i r ec t ions ,  however, 

These d i r ec t ions  w i l l  be  ca l l ed  c h a r a c t e r i s t i c ,  

Across these  character-  

Solving (B.2) f o r  I$,,, we have 
L L  

ar- - - 

F O  -1, Q 0 0 

H O  0 I 0 "4 
d4r d t  0 0 0 0 

4d)t d r  d t  0 0 0 

dw; 0 0 dr  d t  0 

dW+ o 0 0 d r  d-t 
c - A  0 0 0 

d r  d t  0 0 0 

o d r  d t  0 0 

0 0  0 dr- d t  
0 0  0 0 d r  

0 0  0 I 0 -A2  

0 

0 

0 

d t  

(B 3) 
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t 

This function is indeterminate i f  both numerator and denominator 

are equal t o  zero. 

following four families of physical  cha rac t e r i s t i c s ,  

The vanishing of t h e  denominator y ie lds  the  

Along the  d i rec t ions  11* and 11-, t he  numerator of (B.3) vanishes 

ident ica l ly ;  along I+  and I-, t h e  vanishing of the  numerator y ie lds  

03-41 

which are ca l led  t h e  c h a r a c t e r i s t i c  equations along dr /dt  = 2 c . P 
Solution for each of t h e  o the r  f i v e  second der iva t ives  gives the 

same four  physical  charac te r i s t ics .  

for wrr is  

The numerator of t h e  so lu t ion  

which vanishes iden t i ca l ly  along I+  and I-, and y ie lds  the  following 

cha rac t e r i s t i c  equations along 11+ and 11- , 

The vanishing of t h e  numerators of 4 

as those from $rr ; r e s u l t s  from t h e  so lu t ions  of w 

i den t i ca l  t o  those from wm . 

and $tt give the  same r e s u l t s  rt 

and wtt are rt 
Equations (B.4) and (B.5) a r e  the  
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governing equations along t h e  c h a r a c t e r i s t i c  d i r e c t i o n s  f o r  t h e  

(A. 17) , respect ively.  

The equations governing t h e  propagation of d i s c o n t i n u i t i e s  

can be derived by a procedure similar t o  t h e  stress formulation i n  

Appendix A, Integrat ing (B.4)  along I- from A t o  B, (Fig, A , l ) ,  

we may write 

/A 
or  

The vanishing of t h e  right-hand s i d e  when d r  -+ 0, i s  dependent on 

t h e  boundedness of @, +rD and wr . 
Similar ly  in tegra t ion  along TI- from A t o  C and 11' from A t o  

E y i e lds ,  respect ively 

In wri t ing these equations, we must requi re  4 ,  4r, and wr t o  be 

bounded along 11- and 11' . Equations (B.7) and (B.8) imply t h a t  
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The va r i a t ion  i n  amplitude of the  functions 6 1 $ ~ ,  64r as  they 

propagate along I 

s ign  along 1; and I, and subtract ing one from t h e  other.  

approaches I ,  , w e  have 

+ is obtained by wri t ing (B.4) with t h e  upper 
+ + A s  I, 

+ 

Combining (B.6) and (B.9) and in tegra t ing ,  w e  obtain 

JCbr = A r - *  

which is  i d e n t i c a l  with t he  first of (A.31). 

a l l  of equations (A.31) and (A.32) may be obtained by t h e  displace- 

ment approach. The t h i r d  of (A.31) is obtained from (A.30) , (3) 

and the  condition t h a t  I$ must be  continuous, o r  64 = 0 . 

By similar procedures, 
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